SAFETY SYLLABUS

CHAPTER-1 PRINCIPLES OF SAFETY MANAGEMENT

UNIT I CONCEPTS AND TECHNIQUES


Incident Recall Technique (IRT), disaster control, job safety analysis, safety survey, safety inspection, safety sampling, evaluation of performance of supervisors on safety.

UNIT II SAFETY AUDIT - INTRODUCTION

Components of safety audit, types of audit, audit methodology, non conformity reporting (NCR), audit checklist and report – review of inspection, remarks by government agencies, consultants, experts – perusal of accident and safety records, formats – implementation of audit indication - liaison with departments to ensure co-ordination – check list – identification of unsafe acts of workers and unsafe conditions in the shop floor.

UNIT III ACCIDENT INVESTIGATION AND REPORTING


UNIT IV SAFETY PERFORMANCE MONITORING

ANSI (Z16.1) Recommended practices for compiling and measuring work injury experience – permanent total disabilities, permanent partial disabilities, temporary total disabilities - Calculation of accident indices, frequency rate, severity rate, frequency severity incidence, incident rate, accident rate, safety “t” score, safety activity rate – problems.

UNIT V SAFETY EDUCATION AND TRAINING


CHAPTER-2 OCCUPATIONAL HEALTH AND INDUSTRIAL HYGIENE

UNIT I PHYSICAL HAZARDS

Noise, compensation aspects, noise exposure regulation, properties of sound, occupational damage, risk factors, sound measuring instruments, octave band analyzer, noise networks, noise surveys, noise control program, industrial audiometry, hearing conservation programs- vibration, types, effects, instruments, surveying procedure, permissible exposure limit.

Ionizing radiation, types, effects, monitoring instruments, control programs, OSHA standard- non-ionizing radiations, effects, types, radar hazards, microwaves and radio-waves, lasers, TLV- cold environments, hypothermia, wind chill index, control measures- hot environments, thermal comfort, heat stress indices, acclimatization, estimation and control

UNIT II CHEMICAL HAZARDS

Recognition of chemical hazards-dust, fumes, mist, vapour, fog, gases, types, concentration, Exposure vs. dose, TLV - Methods of Evaluation, process or operation description, Field Survey, Sampling methodology, Industrial Hygiene calculations, Comparison with OSHAS Standard.

Air Sampling instruments, Types, Measurement Procedures, Instruments Procedures, Gas and Vapour monitors, dust sample collection devices, personal sampling
Methods of Control - Engineering Control, Design maintenance considerations, design specifications - General Control Methods - training and education

UNIT III BIOLOGICAL AND ERGONOMICAL HAZARDS

Classification of Biohazardous agents - examples, bacterial agents, rickettsial and chlamydial agents, viral agents, fungal, parasitic agents, infectious diseases - Biohazard control program, employee health program-laboratory safety program-animal care and handling-biological safety cabinets - building design. Work Related Musculoskeletal Disorders - carpal tunnel syndrome CTS- Tendon pain-disorders of the neck- back injuries.

UNIT IV OCCUPATIONAL HEALTH AND TOXICOLOGY

Concept and spectrum of health - functional units and activities of occupational health services, pre-employment and post-employment medical examinations - occupational related diseases, levels of prevention of diseases, notifiable occupational diseases such as silicosis, asbestosis, pneumoconiosis, siderosis, anthracosis, aluminium and anthrax, lead-nickel, chromium and manganese toxicity, gas poisoning (such as CO, ammonia, coal and dust etc) their effects and prevention - cardio pulmonary resuscitation, audiometric tests, eye tests, vital function tests.

Industrial toxicology, local, systemic and chronic effects, temporary and cumulative effects, carcinogens entry into human systems

UNIT V OCCUPATIONAL PHYSIOLOGY


CHAPTER-3 INDUSTRIAL SAFETY, HEALTH AND ENVIRONMENT ACTS

UNIT I FACTORIES ACT – 1948

Statutory authorities – inspecting staff, health, safety, provisions relating to hazardous processes, welfare, working hours, employment of young persons – special provisions – penalties and procedures-Tamilnadu Factories Rules 1950 under Safety and health chapters of Factories Act 1948

UNIT II ENVIRONMENT ACT – 1986

General powers of the central government, prevention, control and abatement of environmental pollution- Biomedical waste (Management and handling Rules, 1989-The noise pollution (Regulation and control) Rules, 2000-The Batteries (Management and Handling Rules) 2001- No Objection certificate from statutory authorities like pollution control board.


UNIT III MANUFACTURE, STORAGE AND IMPORT OF HAZARDOUS CHEMICAL RULES 1989


UNIT IV OTHER ACTS AND RULES 20


UNIT V INTERNATIONAL ACTS AND STANDARDS

CHAPTER 4 FIRE ENGINEERING AND EXPLOSION CONTROL

UNIT I PHYSICS AND CHEMISTRY OF FIRE


UNIT II FIRE PREVENTION AND PROTECTION


UNIT III INDUSTRIAL FIRE PROTECTION SYSTEMS


UNIT IV BUILDING FIRE SAFETY

Objectives of fire safe building design, Fire load, fire resistant material and fire testing – structural fire protection – structural integrity – concept of egress design - exists – width calculations - fire certificates – fire safety requirements for high rise buildings – snookers.

UNIT V EXPLOSION PROTECTING SYSTEMS

Principles of explosion-detonation and blast waves-explosion parameters – Explosion Protection, Containment, Flame Arrestors, isolation, suppression, venting, explosion relief of large enclosure-explosion venting-inert gases, plant for generation of inert gas-rupture disc in process vessels and lines explosion, suppression system based on carbon dioxide (CO2) and halons-hazards in LPG, ammonia (NH3), sulphur dioxide (SO3), chlorine (CL2) etc.

CHAPTER 5 COMPUTER AIDED HAZARD ANALYSIS

UNIT I HAZARD, RISK ISSUES AND HAZARD ASSESSMENT

Introduction, hazard, hazard monitoring-risk issue, group or societal risk, individual risk, voluntary and involuntary risk, social benefits Vs technological risk, approaches for establishing risk acceptance levels, Risk estimation. Hazard assessment, procedure, methodology; safety audit, checklist analysis, what-if analysis, safety review, preliminary hazard analysis(PHA), human error analysis, hazard operability studies(HAZOP),safety warning systems.

UNIT II COMPUTER AIDED INSTRUMENTS

Applications of Advanced Equipments and Instruments, Thermo Calorimetry, Differential Scanning Calorimeter(DSC), Thermo Gravimetric Analysers(TGA), Accelerated Rate Calorimeter(ARC), Reactive Calorimeter(RC), Reaction System Screening Tool(RSST) - Principles of operations, Controlling parameters, Applications, advantages.
Explosive Testing, Deflagration Test, Detonation Test, Ignition Test, Minimum ignition energy Test, Sensitiveness Test, Impact Sensitiveness Test(BAM) and Friction Sensitiveness Test (BAM), Shock Sensitiveness Test, Card Gap Test.
UNIT III RISK ANALYSIS QUANTIFICATION AND SOFTWARES

Fault Tree Analysis and Event Tree Analysis, Logic symbols, methodology, minimal cut set ranking - fire explosion and toxicity index(FETI), various indices - Hazard analysis(HAZAN)- Failure Mode and Effect Analysis(FMEA)- Basic concepts of Reliability- Software on Risk analysis, CISCON, FETI, HAMGARS modules on Heat radiation, Pool fire, Jet, Explosion. Reliability softwares on FMEA for mechanical and electrical systems.

UNIT IV CONSEQUENCES ANALYSIS

Logics of consequences analysis- Estimation- Hazard identification based on the properties of chemicals- Chemical inventory analysis- Identification of hazardous processes- Estimation of source term, Gas or vapour release, liquid release, two phase release- Heat radiation effects, BLEVE, Pool fires and Jet fire- Gas/vapour dispersion- Explosion, UVCE and Flash fire, Explosion effects and confined explosion- Toxic effects- Plotting the damage distances on plot plant/layout.

UNIT V CREDIBILITY OF RISK ASSESSMENT TECHNIQUES

Past accident analysis as information sources for Hazard analysis and consequences analysis of chemical accident, Mexico disaster, Flixborough, Bhopal, Seveso, Pasadena, Feyzin disaster(1966), Port Hudson disaster- convey report, hazard assessment of non-nuclear installation- Rijnmond report, risk analysis of size potentially Hazardous Industrial objects- Rasmussen masses report, Reactor safety study of Nuclear power plant

CHAPTER-6 ELECTRICAL SAFETY

UNIT I CONCEPTS AND STATUTORY REQUIREMENTS


UNIT II ELECTRICAL HAZARDS

Primary and secondary hazards-shocks, burns, scalds, falls-human safety in the use of electricity. Energy leakage-clearances and insulation-classes of insulation-voltage classifications-excess energy-current surges-Safety in handling of war equipments-over current and short circuit current-heating effects of current-electromagnetic forces-corona effect-static electricity –definition, sources, hazardous conditions, control, electrical causes of fire and explosion-ionization, spark and arc-ignition energy-national electrical safety code ANSI.

Lightning, hazards, lightning arrester, installation – earthing, specifications, earth resistance, earth pit maintenance.

UNIT III PROTECTION SYSTEMS


FRLS insulation-insulation and continuity test-system grounding-equipment grounding-earth leakage circuit breaker (ELCB)-cable wires-maintenance of ground-ground fault circuit interrupter-use of low voltage-electrical guards-Personal protective equipment – safety in handling hand held electrical appliances tools and medical equipments.

UNIT IV SELECTION, INSTALLATION, OPERATION AND MAINTENANCE

Role of environment in selection-safety aspects in application - protection and interlock-self diagnostic features and fail safe concepts-lock out and work permit system-discharge rod and earthing devices-safety in the use of portable tools-cabling and cable joints-preventive maintenance.

UNIT V HAZARDOUS ZONES
Classification of hazardous zones-intrinsically safe and explosion proof electrical apparatus-increase safe equipment-their selection for different zones-temperature classification-grouping of gases-use of barriers and isolators-equipment certifying agencies.

CHAPTER-7 SAFETY IN CHEMICAL INDUSTRIES

UNIT I SAFETY IN PROCESS DESIGN AND PRESSURE SYSTEM DESIGN

Design process, conceptual design and detail design, assessment, inherently safer design-chemical reactor, types, batch reactors, reaction hazard evaluation, assessment, reactor safety, operating conditions, unit operations and equipments, utilities.

Pressure system, pressure vessel design, standards and codes-pipe works and valves-heat exchangers-process machinery-over pressure protection, pressure relief devices and design, fire relief, vacuum and thermal relief, special situations, disposal-flare and vent systems-failures in pressure system.

UNIT II PLANT COMMISSIONING AND INSPECTION

Commissioning phases and organization, pre-commissioning documents, process commissioning, commissioning problems, post commissioning documentation.

Plant inspection, pressure vessel, pressure piping system, non destructive testing, pressure testing, leak testing and monitoring-plant monitoring, performance monitoring, condition, vibration, corrosion, acoustic emission-pipe line inspection.

UNIT III PLANT OPERATIONS

Operating discipline, operating procedure and inspection, format, emergency procedures-hand over and permit system-start up and shut down operation, refinery units-operation of fired heaters, driers, storage-operating activities and hazards-trip systems-exposure of personnel.

UNIT IV PLANT MAINTENANCE, MODIFICATION AND EMERGENCY PLANNING

Management of maintenance, hazards-preparation for maintenance, isolation, purging, cleaning, confined spaces, permit system-maintenance equipment-hot works-tank cleaning, repair and demolition-online repairs-maintenance of protective devices-modification of plant, problems-controls of modifications.

Emergency planning, disaster planning, onsite emergency-offsite emergency, APELL.

UNIT V STORAGES

General consideration, petroleum product storages, storage tanks and vessel-storages layout-segregation, separating distance, secondary containment-venting and relief, atmospheric vent, pressure, vacuum valves, flame arrestors, fire relief-fire prevention and protection-LPG storages, pressure storages, layout, instrumentation, vapourizer, refrigerated storages-LNG storages, hydrogen storages, toxic storages, chlorine storages, ammonia storages, other chemical storages- underground storages-loading and unloading facilities-drum and cylinder storage-ware house, storage hazard assessment of LPG and LNG.

CHAPTER-8 INDUSTRIAL SAFETY LABORATORY

NOISE LEVEL MEASUREMENT AND ANALYSIS

Measurement of sound pressure level in dB for Impact, continuous and intermittent sources at various networks, peak and average values.

FRICTION TEST

Explosive materials like barium nitrate, gun powder, white powder, amorces composition etc.

IMPACT TEST

Explosive materials like gun powder, white powder, amerce composition etc.

Burst strength test of packaging materials like paper bags, corrugated cartoons, wood etc.

Auto ignition temperature test.
EXHAUST GAS MEASUREMENT AND ANALYSIS
Measurement of Sox, Nox, Cox, hydrocarbons.

ENVIRONMENTAL PARAMETER MEASUREMENT
Dry Bulb Temperature, Wet Bulb Temperature, Determination of relative humidity, wind flow and effective corrective effective.
Particle size Measurement
Air sampling analysis

TRAINING IN USAGE AND SKILL DEVELOPMENT
Personal protective equipment:
Respiratory and non-respiratory-demonstration-self contained breathing apparatus. Safety helmet, belt, hand gloves, goggles, safety shoe, gum boots, ankle shoes, face shield, nose mask, ear plug, ear muff, anti static and conducting plastics/rubber materials, apron and leg guard.
Fire extinguishers and its operations
Water Co2 Foam
Carbon dioxide (Co2)
Dry chemical powder and
Currently amendment fire safety systems
Static charge testing on plastic, rubber, ferrous and non-ferrous materials.
Illumination testing - by lux meter and photo meter.
Electrical safety
Insulation resistance for motors and cables
Estimation of earth resistance
Earth continuity test
Sensitivity test for MCB, ELCB, RCCB, MCCB 20
Software Usage
Dispersion modeling of various highly dangerous chemicals using ALOHA software
First-Aid
Road safety signals and symbols
Equipments Required
1. Noise level meter : 1 No
2. Friction tester : 1 No
3. Impact tester : 1 No
4. Exhaust gas analyzer: 1 No
5. High volume sampler : 1 No
6. PPE Set : 1 No
7. Fire extinguisher set : 1 No
8. Static charge tester : 1 No
9. First aid kid : 1 No
10. Lock out/Tag out : 1 No
11. Software: ALOHA, CAMEO

CHAPTER-9 RELIABILITY ENGINEERING

UNIT I RELIABILITY CONCEPT

UNIT II FAILURE DATA ANALYSIS
Time to failure distributions – Exponential, normal, Gamma, Weibull, ranking of data – probability plotting techniques – Hazard plotting.

UNIT III RELIABILITY PREDICTION MODELS

UNIT IV RELIABILITY MANAGEMENT

UNIT V RISK ASSESSMENT
Definition and measurement of risk – risk analysis techniques – risk reduction resources – industrial safety and risk assessment.

CHAPTER-10 PLANT LAYOUT AND MATERIALS HANDLING

UNIT I PLANT LOCATION
Selection of plant locations, territorial parameters, considerations of land, water, electricity, location for waste treatment and disposal, further expansions
Safe location of chemical storages, LPG, LNG, CNG, acetylene, ammonia, chlorine, explosives and propellants

UNIT II PLANT LAYOUT
Safe layout, equipment layout, safety system, fire hydrant locations, fire service rooms, facilities for safe effluent disposal and treatment tanks, site considerations, approach roads, plant railway lines, security towers.
Safe layout for process industries, engineering industry, construction sites, pharmaceuticals, pesticides, fertilizers, refineries, food processing, nuclear power stations, thermal power stations, metal powders manufacturing, fireworks and match works

UNIT III WORKING CONDITIONS
Principles of good ventilation, purpose, physiological and comfort level types, local and exhaust ventilation, hood and duct design, air conditioning, ventilation standards, application.
Purpose of lighting, types, advantages of good illumination, glare and its effect, lighting requirements for various work, standards - House keeping, principles of 5S.

UNIT IV MANUAL MATERIAL HANDLING AND LIFTING TACKLES
Preventing common injuries, lifting by hand, team lifting and carrying, handling specific shape machines and other heavy objects – accessories for manual handling, hand tools, jacks, hand trucks, dollies and wheel barrows – storage of specific materials - problems with hazardous materials, liquids, solids – storage and handling of cryogenic liquids - shipping and receiving, stock picking, dock boards, machine and tools, steel strapping and sacking, glass and nails, pitch and glue, boxes and cartons and car loading – personal protection – ergonomic considerations
Fiber rope, types, strength and working load inspection, rope in use, rope in storage - wire rope, construction, design factors, deterioration causes, sheaves and drums, lubrication, overloading, rope fitting, inspection and replacement – slings, types, method of attachment, rated capacities, alloy chain slings, hooks and attachment, inspection

UNIT V MECHANICAL MATERIAL HANDLING
Hoisting apparatus, types - cranes, types, design and construction, guards and limit devices, signals, operating rules, maintenance safety rules, inspection and inspection checklist – conveyors, precautions, types, applications.
Powered industrial trucks, requirements, operating principles, operators selection and training and performance test, inspection and maintenance, electric trucks, gasoline operated trucks, LPG trucks – power elevators, types of drives, hoist way and machine room emergency procedure, requirements for the handicapped, types- Escalator, safety devices and brakes, moving walks – man lifts, construction, brakes, inspection.
CHAPTER 11 WORK STUDY AND ERGONOMICS

UNIT I WORK STUDY

UNIT II ERGONOMICS

UNIT III PERSONAL PROTECTION

UNIT IV PROCESS AND EQUIPMENT DESIGN

UNIT V MAN MACHINE SYSTEMS

CHAPTER 12 HUMAN FACTORS IN ENGINEERING

UNIT I ERGONOMICS AND ANATOMY
Introduction to ergonomics: The focus of ergonomics, ergonomics and its areas of application in the work system, a brief history of ergonomics, attempts to humanize work, modern ergonomics, future directions for ergonomics

Anatomy, Posture and Body Mechanics: Some basic body mechanics, anatomy of the spine and pelvis related to posture, posture stability and posture adaptation, low back pain, risk factors for musculoskeletal disorders in the workplace, behavioural aspects of posture, effectiveness and cost effectiveness, research directions

UNIT II HUMAN BEHAVIOR
Individual differences, Factors contributing to personality, Fitting the man to the job, Influence of difference on safety, Method of measuring characteristics, Accident Proneness. Motivation, Complexity of Motivation, Job satisfaction. Management theories of motivation, Job enrichment theory. Frustration and Conflicts, Reaction to frustration, Emotion and Frustration. Attitudes-Determination of attitudes, Changing attitudes Learning, Principles of Learning, Forgetting, Motivational requirements. 27

UNIT III ANTHROPOMETRY AND WORK DESIGN FOR STANDING AND SEATED WORKS
Designing for a population of users, percentile, sources of human variability, anthropometry and its uses in ergonomics, principals of applied anthropometry in ergonomics, application of anthropometry in design, design for everyone, anthropometry and personal space, effectiveness and cost effectiveness
Fundamental aspects of standing and sitting, an ergonomics approach to work station design, design for standing workers, design for seated workers, work surface design, visual display units, guidelines for design of static work, effectiveness and cost effectiveness, research directions

UNIT IV MAN - MACHINE SYSTEM AND REPETITIVE WORKS AND MANUAL HANDLING TASK

Applications of human factors engineering, man as a sensor, man as information processor, man as controller – Man vs Machine.

Ergonomics interventions in Repetitive works, handle design, key board design- measures for preventing in work related musculoskeletal disorders (WMSDs), reduction and controlling, training Anatomy and biomechanics of manual handling, prevention of manual handling injuries in the work place, design of manual handling tasks, carrying, postural stability

UNIT V HUMAN SKILL AND PERFORMANCE AND DISPLAY, CONTROLS AND VIRTUAL ENVIRONMENTS

A general information-processing model of the users, cognitive system, problem solving, effectiveness. Principles for the design of visual displays- auditory displays- design of controls- combining displays and controls- virtual (synthetic) environments, research issues.

CHAPTER-13 SAFETY IN CONSTRUCTION

UNIT I ACCIDENTS CAUSES AND MANAGEMENT SYSTEMS

Problems impeding safety in construction industry- causes of fatal accidents, types and causes of accidents related to various construction activities, human factors associated with these accident – construction regulations, contractual clauses – Pre contract activates, preconstruction meeting - design aids for safe construction – permits to work – quality assurance in construction - compensation – Recording of accidents and safety measures – Education and training

UNIT II HAZARDS OF CONSTRUCTION AND PREVENTION


UNIT III WORKING AT HEIGHTS

Fall protection in construction OSHA 3146 – OSHA requirement for working at heights, Safe access and egress – safe use of ladders- Scaffoldings , requirement for safe work platforms, stairways, gangways and ramps – fall prevention and fall protection , safety belts, safety nets, fall arrestors, controlled access zones, safety monitoring systems – working on fragile roofs, work permit systems, height pass – accident case studies.

UNIT IV CONSTRUCTION MACHINERY


UNIT V SAFETY IN DEMOLITION WORK

Safety in demolition work, manual, mechanical, using explosive - keys to safe demolition, pre survey inspection, method statement, site supervision, safe clearance zone, health hazards from demolition - Indian standard - trusses, girders and beams – first aid – fire hazards and preventing methods – interesting experiences at the construction site against the fire accidents.

CHAPTER-14 SAFETY IN ENGINEERING INDUSTRY

UNIT I SAFETY IN METAL WORKING MACHINERY AND WOOD WORKING MACHINES
General safety rules, principles, maintenance, Inspections of turning machines, boring machines, milling machine, planning machine and grinding machines, CNC machines, Wood working machinery, types, safety principles, electrical guards, work area, material handling, inspection, standards and codes- saws, types, hazards.

UNIT II PRINCIPLES OF MACHINE GUARDING

Guarding during maintenance, Zero Mechanical State (ZMS), Definition, Policy for ZMS – guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing-guard construction-guard opening.

Selection and suitability: lathe-drilling-boring-milling-grinding-shaping-sawing-shearing-presses-forges-hammer-flywheels-shafts-couplings-gears-sprockets wheels and chains-pulleys and belts-authorized entry to hazardous installations-benefits of good guarding systems. 36

UNIT III SAFETY IN WELDING AND GAS CUTTING

Gas welding and oxygen cutting, resistances welding, arc welding and cutting, common hazards, personal protective equipment, training, safety precautions in brazing, soldering and metalizing – explosive welding, selection, care and maintenance of the associated equipment and instruments – safety in generation, distribution and handling of industrial gases-colour coding – flashback arrestor – leak detection-pipe line safety-storage and handling of gas cylinders.

UNIT IV SAFETY IN COLD FARMING AND HOT WORKING OF METALS

Cold working, power presses, point of operation safe guarding, auxiliary mechanisms, feeding and cutting mechanism, hand or foot-operated presses, power press electric controls, power press set up and die removal, inspection and maintenance-metal sheers-press brakes.

Hot working safety in forging, hot rolling mill operation, safe guards in hot rolling mills – hot bending of pipes, hazards and control measures.

Safety in gas furnace operation, cupola, crucibles, ovens, foundry health hazards, work environment, material handling in foundries, foundry production cleaning and finishing foundry processes.

UNIT V SAFETY IN FINISHING, INSPECTION AND TESTING

Heat treatment operations, electro plating, paint shops, sand and shot blasting, safety in inspection and testing, dynamic balancing, hydro testing, valves, boiler drums and headers, pressure vessels, air leak test, steam testing, safety in radiography, personal monitoring devices, radiation hazards, engineering and administrative controls, Indian Boilers Regulation.

Health and welfare measures in engineering industry-pollution control in engineering industry-industrial waste disposal.

CHAPTER-15 QUALITY ENGINEERING IN PRODUCTION SYSTEMS.

UNIT I INTRODUCTION TO QUALITY ENGINEERING AND LOSS FUNCTION

Quality value and engineering- overall quality system-quality engineering in product design - quality engineering in design of production processes - quality engineering in production - quality engineering in service. Loss function Derivation – use-loss function for products/system- justification of improvements-loss function and inspection- quality evaluations and tolerances-N type, S type, L type

UNIT II ON-LINE QUALITY CONTROL

On-line feedback quality control variable characteristics-control with measurement interval- one unit, multiple units-control systems for lot and batch production. On-line process parameter control variable characteristics- process parameter tolerances- feedback control systems-measurement error and process control parameters.

UNIT III ON-LINE QUALITY CONTROL ATTRIBUTES AND METHODS FOR PROCESS IMPROVEMENTS
Checking intervals - frequency of process diagnosis. Production process improvement method - process diagnosis improvement method - process adjustment and recovery improvement methods.

UNIT IV QUALITY ENGINEERING AND TPM
Preventive maintenance schedules - PM schedules for functional characteristics - PM schedules for large scale systems. Quality tools - fault tree analysis, event tree analysis, failure mode and effect analysis. ISO quality systems.

UNIT V SIX SIGMA AND ITS IMPLEMENTATION
Introduction - definition-methodology - impact of implementation of six sigma-DMAIC method-roles and responsibilities - leaders, champion, black belt, green belts. Do’s and don’ts - readiness of organization - planning-management role - six sigma tools - sustaining six sigma.

CHAPTER-16 DISASTER MANAGEMENT
UNIT I: Philosophy of Disaster management - Introduction to Disaster mitigation - Hydrological, Coastal and Marine Disasters - Atmospheric disasters - Geophysical phenomena - Mass Movement and Land Disasters - Forest related disasters - Wind and water related disasters - deforestation - Use of space technology for control of geological disasters - Master thesis
UNIT II: Technological Disasters - Case studies of Technology disasters with statistical details - Emergencies and control measures - APELL - Onsite and Offsite emergencies - Crisis management groups - Emergency centers and their functions throughout the country - Softwares on emergency controls - Monitoring devices for detection of gases in the atmosphere - Right to know act
UNIT IV: Offshore and onshore drilling - control of fires - Case studies - Marine pollution and control - Toxic, hazardous and Nuclear wastes - state of India's and Global environmental issues - carcinoogens-complex emergencies - Earthquake disasters - the nature - extreme event analysis - the immune system - proof and limits
UNIT V: Environmental education - Population and community ecology - Natural resources conservation - Environmental protection and law - Research methodology and systems analysis - Natural resources conservation - Policy initiatives and future prospects - Risk assessment process, assessment for different disaster types - Assessment data use, destructive capacity-risk adjustment-choice-loss acceptance-disaster aid - public liability insurance-stock taking and vulnerability analysis - disaster profile of the country - national policies - objectives and standards - physical event modification - preparedness, forecasting and warning, land use planning

CHAPTER-17 OHSAS 18000 AND ISO 14000
UNIT I: OHSAS STANDARD
UNIT II: OHSAS 18001 POLICY AND PLANNING
UNIT III: IMPLEMENTATION AND OPERATION, CHECKING AND REVIEW
Guidelines for structure and Responsibilities, Top Management, middle level management, co-ordinator and employees - Developing procedures, identifying training needs, providing training, documentation of training, Training methodology consultation and communications.

Checking and Review; performance measurement and monitoring, Proactive and Reactive monitoring, measurement techniques, inspections, measuring equipment - Accidents reports, Process and procedures, recording, investigation corrective action and follow up - records and records management. Handling documentation, information, records.

UNIT IV ISO 14001

EMS, ISO 14001, specifications, objectives, Environmental Policy, Guidelines and Principles (ISO 14004), clauses 4.1 to 4.5. Documentation requirements, 3 levels of documentation for a ISO 14000 based EMS, steps in ISO 14001.

Implementation plan, Registration, Importance of ISO 14000 to the Management. Auditing ISO14000- General principles of Environmental Audit, Auditor, steps in audit, Audit plan.

UNIT V ENVIRONMENT IMPACT ASSESSMENT

ISO 14040(LCA), General principles of LCA, Stages of LCA, Report and Review. ISO 14020 (Eco labeling) – History, 14021, 14024, Type I labels, Type II labels, ISO 14024, principles, rules for eco labeling before company attempts for it. Advantages. EIA in EMS, Types of EIA, EIA methodology EIS, Scope, Benefits.

Audit-methodology, Auditors Audit results management review-Continual improvement.

CHAPTER-18 ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

UNIT I INTRODUCTION

Intelligence – Definition, types cognitive aspect approach, measuring intelligence – early efforts, IQ and AI: aspects of intelligence – learning, problem solving, creativity, behaviour and biology. Artificial intelligence: Historical background, applications of AI, objections and myths, AI languages: Introduction to PROLOG and LISP.

UNIT II COGNITIVE PSYCHOLOGY

The mind – informative and cybernetics, components for thought, modes of perception – visual, auditory and other systems: memory mechanisms, problem solving – planning, search, the GPS systems; types of learning – rote, parameter, method and concept: Game playing, reasoning, Artificial Vision – picture processing – identifying real objects; Vision programs, factory vision systems.

UNIT III KNOWLEDGE ENGINEERING

Introduction – role of knowledge engineer, knowledge representation – psychology, production rules, logic and programming, Common sense and fuzzy logic, semantic networks, learning systems.

UNIT IV EXPERT SYSTEMS


UNIT V INTRODUCTION TO NEURAL NETWORKS